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Following the classical result of long-time asymptotic convergence
towards a multiple of the Gaussian kernel that holds true for inte-
grable solutions of the Heat Equation posed in the Euclidean Space
R

n, we examine the question of long-time behaviour of the Heat
Equation in the Hyperbolic Space H

n, n > 1, also for integrable
data and solutions. We show that the typical convergence proof
towards a multiple of the fundamental solution works in the class
of radially symmetric solutions. We also prove the more precise
result that says that this limit behaviour is exactly described by
the simple 1D Euclidean kernel after a fortunate change of vari-
ables. Indeed, this counter-intuitive fact happens after introducing
the strong correction caused by a remarkable outward drift with
constant speed (ballistic behaviour), an effect produced by the ge-
ometry. Finally, we find that such fine convergence results are false
for general nonnegative solutions with integrable initial data if the
radial symmetry is missing.
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1. Introduction

We study the long-time behaviour of the solutions of the Heat Equation
posed in the Hyperbolic Space Hn, n > 1. We take as motivation the classical
result of asymptotic convergence towards (a multiple of) the Gaussian kernel
for the Heat Equation ∂tu = ∆u posed in the Euclidean Space Rn, n ≥ 1,
which holds for all integrable initial data u(x, 0) ∈ L1(Rn) and admits finer
versions with explicit rate of convergence under extra assumptions on the
data, cf. [8, 31]. We recall next the main versions of the Euclidean statement.

Theorem 1.1. Let u(x, t) be a solution of the heat equation taking initial
data u0 ∈ L1(Rn) with mass

∫
Rn u0 dx = M > 0. Then we have

(1.1) ∥u(x, t)−MGt(x)∥L1(Rn) → 0 as t → ∞.

and

(1.2) tn/2∥u(x, t)−MGt(x)∥L∞(Rn) → 0 as t → ∞.

Here, Gt is the Gaussian kernel, Gt(x) = (4πt)−n/2e−|x|2/4t. The rates are
optimal in that generality. Norms are taken for fixed t.

This result has a stronger version under stricter conditions.

Theorem 1.2. Assume that u0 ∈ L1(Rn) and is compactly supported (or
has finite second moment) and assume that we put the origin of coordinates
at the center of mass of u0. Then if u(x, t) is the solution of the heat equation
we have

(1.3) ∥u(x, t)−MGt(x)∥L1(Rn) ≤ C t−1 for all t ≥ 1.
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In this paper we examine the question of whether a similar convergence
holds when the Heat Equation is posed in the Hyperbolic Space. As a positive
result, we show that convergence towards a multiple of the fundamental
solution works in the class of radially symmetric solutions with finite mass.

Theorem 1.3. Let u(x, t) be a solution of the heat equation in the hy-
perbolic space whose initial function u0 ∈ L1(Hn) is radially symmetric in
geodesic polar coordinates around a pole o ∈ Hn, and has mass M . Then we
have

(1.4) ∥u(x, t)−MPt(x)∥L1(Hn) → 0 as t → ∞ ,

where Pt(x) denotes the fundamental solution of the heat equation in Hn

centered at the pole (h.f.s. for short). Moreover,

(1.5) ∥u(x, t)−MP (x, t)∥L∞(Hn) = O(t−3/2e−λ1t) as t → ∞.

Here mass means M =
∫
Hn u0(x) dµ(x), where dµ is the volume element

in Hn. Note that we are correcting the norm of the last formula by the precise
size of the h.f.s., ∥Pt(·)∥∞ = O(t−3/2e−(n−1)2t/4). By interpolation, conver-
gence estimates with the appropriate weights are obtained in all Lp(Hn)
norms, for all 1 < p < ∞, see formula (6.5).

For the reader’s benefit, the relevant needed concepts and facts are sum-
marized in Section 2. In Section 3 we prove that fundamental solutions
bound any solution with compactly supported initial data from above and
below on expanding sets, and we derive a Harnack inequality of elliptic type
for such solutions.

We study the peculiar behaviour of the h.f.s. for large times in Section 4
based on the mass analysis, and we introduce the concepts of mass escape
and mass line, which happens to be r(t) = (n− 1)t for large t. It is the
realization of a drift with constant speed c = (n− 1) in the forward direction
of the radial axis of polar coordinates. This drift had been noted by Davies
[6] and makes a big difference with the behaviour found in Euclidean space.

The asymptotic behaviour of the h.f.s. is made precise in Section 5 where
we prove that the fundamental solution itself resembles for large times the
fundamental solution of the heat equation in 1D (the Gaussian kernel), but
for the drift. By means of a careful analysis of the equations we prove asymp-
totic convergence to the 1D Euclidean profile up to this drift, see Theo-
rems 5.1, 5.2. After that work, the asymptotic convergence results for radial
solutions of Theorem 1.3 are proved in Section 6.
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Section 7 studies the class of horospheric solutions. They are not inte-
grable in Hn but their analysis is simpler. They allow to derive in a very
direct way the corresponding drift effect that causes the mass to escape into
the outer field with constant speed.

In the last part of the paper we prove a negative result. We find that
the previous kind of stabilization towards the fundamental solution does not
hold for general nonnegative solutions of the heat flow with integrable initial
data if radial symmetry is lacking. Here is the result.

Theorem 1.4. Under the assumptions that u0 ∈ L1(H3) with mass M > 0,
and u(x, t) is a solution of the heat equation in the hyperbolic space the result

(1.6) ∥u(x, t)−MPt(x)∥L1(H3) → 0 as t → ∞.

is in general false, even if u0 ≥ 0 and is compactly supported.

We give a full proof of this result in Section 8. The result should be true
in all dimensions n > 1 but we prove here in dimension 3 since we make
much use of explicit formulas. Explicit counterexamples are constructed. A
comment on the method: we want to compare for all large times solutions
with general data u0 ∈ L1(Hn) with a multiple of the fundamental solution.
We will get important information by making the comparison in the case
of particular solutions that are explicitly or almost explicitly known. These
solutions correspond either to a displacement of the initial mass, or to a
delay in time. Both approaches give quite different results as reflected in the
above theorems.

Comments. In the whole paper we will work in the class of solutions with
initial data u0 ∈ L1(Hn) constructed by the semigroup approach. A unique
solution u(x, t) of the heat equation with such initial data exists in that
class, u ∈ C([0,∞) : L1(Hn)), and u is C∞ smooth in space and time for all
t > 0. See in that respect [16, 27]. Notice the a semigroup of contractions
is also generated in Lp(Hn) for all p > 1 but the value p = 1 is the special
choice here. The Maximum Principle applies so that u0 ≥ 0 in Hn implies
u ≥ 0, in fact u(x, t) > 0 for all (x, t), t > 0. Other properties are mentioned
below like conservation of mass, see formula (2.4).

Following usual conventions, we use the notation Gt(x) or Pt(x) to de-
note G(x, t) or P (x, t) when t is thought of as fixed. To avoid confusion we
then use the notation ∂tG, ∂tP for the partial derivative w.r.t. to time. Simi-
lar notations appear elsewhere, i.e., subscripts as variables or as derivatives,
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but we hope that no confusion will arise. We usually work with u0 ≥ 0. Since
the equation is linear the results for signed data follow immediately.

2. Preliminaries

Polar geodesic coordinates. We recall some facts about the hyperbolic
space and the heat equation posed on it. Several models are used to describe
Hn in an explicit coordinate system, see [4, 24] or similar general references.
Thus, one may realize Hn as an embedded hyperboloid in Rn+1, endowed
with the inherited Minkowski metric. It is also possible to use one of the two
Poincaré realizations, so that we identify Hn either with the unit ball in Rn

or with the upper half-space, each endowed with an appropriate metric with
the property that the Riemannian distance from any given point to points
approaching the topological boundary tends to +∞. Here below, it will be
convenient to describe the hyperbolic space as a model manifold following
[11], see also our previous work [29]. On such a manifold, a pole o ∈ Hn is
given, and the Riemannian metric has the form

ds2 = dr2 + f(r)2dσ2,

for an appropriate function f , where r is the geodesic distance from the
pole o while dσ2 denotes the canonical metric on the unit sphere Sn−1.
The hyperbolic space Hn is obtained by making the precise choice f(r) =
sinh r (hyperbolic sine function). This representation is usually referred to as
polar geodesic coordinates for hyperbolic space around the given pole. The
differential expression of the Laplace-Beltrami operator ∆g in the hyperbolic
space with curvature K = −1 is then given by

(2.1) ∆gu = (sinh r)1−n ∂

∂r

(
(sinh r)n−1∂u

∂r

)
+

1

(sinh r)2
∆Sn−1u .

In such coordinates the volume element is dµ = (sinh r)n−1drdωn−1, where
dωn−1 is the volume element on the unit sphere Sn−1, see [25]. Such a for-
mulation is most convenient in the setting of radial functions u(r) or u(r, t).
Then, the heat equation is written as

∂tu = u′′rr(r) + (n− 1) coth(r)u′r(r)(2.2)

=
1

(sinh r)n−1

(
(sinh r)n−1u′r(r)

)′
r
,
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where u′r = ∂ru. In the sequel we will often write ∆ for ∆g if no confusion
is expected.

Fundamental solution and properties. Let us call P (x, o, t) the funda-
mental solution of the heat equation in hyperbolic space (h.f.s.) with center
o ∈ M = Hn; this point is identified with x = 0 in the standard model repre-
sentation, and also in the Poincaré disk. But all points of Hn are equivalent
modulo an isometrical transformation, a well-known fact. It follows that
Pt is only a function of the geodesic distance, P (x, o, t) = Gt(d(o, x)), with
d(·, ·) the geodesic distance between two points. We have the following rep-
resentation formula for general solutions with integrable initial data u0:

(2.3) u(x, t) =

∫

Hn

u0(y)Gt(d(x, y)) dµ(y).

In fact, this formula characterizes the semigroup class of unique L1 solutions.
We recall that µ is the volume measure in Hn that we have just introduced.
In the sequel we perform the proofs under the further restriction that u0 ≥ 0.
For a signed solution we must only separate the positive and negative parts
of the data and apply the results to both partial solutions. We will also
write r = d(x, o). Some basic consequences follow from the representation
formula, like conservation of mass:

(2.4)

∫

Hn

u(x, t) dµ(x) =

∫

Hn

u0(x) dµ(x) ,

and the maximum principle in its strong or weak form.

(ii) It is well-known that G(r, t) = Gt(r) is a positive, smooth and decreasing
function of r > 0. Therefore, Gt(0) is the maximum value of Gt(r), r ≥ 0.
In this way, we obtain a L1-L∞ smoothing effect

(2.5) ∥u(·, t)∥∞ ≤ Gt(0)∥u0∥1.

We see that the fundamental solution gives the worst case in this estimate.

(iii) The fundamental solution of the heat equation in hyperbolic space has
a clear explicit form in dimension n = 3. It reads:

(2.6) G(r, t) = C3t
−3/2e−t r

sinh r
e−r2/4t, C3 = (4π)−3/2.

In other dimensions n ≥ 2 the formulas are rather involved, see [17]. There
is a very useful recurrence relation that allows to derive the fundamental
solution for all dimensions from just two of them. It is contained in [7].
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Proposition 2.1. If P(n)(x, t) is the fundamental solution around a given
pole in dimension n ≥ 1 expressed in polar geodesic coordinates as G(n)(r, t),
then

(2.7) v(r, t) = −e−nt (sinh r)−1∂rG(n)(r, t)

gives the expression of the fundamental solution around the same pole in
dimension n′ = n+ 2, but for a constant. We have v(r, t) = 2πG(n+2)(r, t).

In this way, formulas for G(n)(x, t) can be derived for all odd n from
G(3)(x, t). Very precise information about function Gt in all dimensions is
given by the following estimate by Davies [6], see also [7].

Proposition 2.2. For all n ≥ 1 there exists a positive constant cn such
that

(2.8)
1

cn
hn(r, t) ≤ G(n)(r, t) ≤ cnhn(r, t)

for all t > 0 and r > 0, where

(2.9) hn(r, t) =
1

(4πt)n/2
e−λ1t−

n−1

2
r− r2

4t (1 + r + t)(n−3)/2(1 + r).

and λ1 = (n− 1)2/4.

Note that λ1 is the bottom of the spectrum of the Laplacian in Hn. It
is often useful to write the exponential term as

e
−λ1t−

n− 1

2
r −

r2

4t = e
−
(r + (n− 1)t)2

4t .

If we fix r = 0 then we have G(0, t) ≈ t−n/2 as t → 0. Actually, the
fundamental solution of hyperbolic space looks like the Gaussian kernel of
Euclidean space as t ∼ 0, but we will not be much interested in small times.
On the other hand, in the limit t → ∞ we have a very different behaviour:

(2.10) G(0, t) ≈ t−3/2e−λ1t.

In this way we obtain a precise L1-L∞ smoothing effect.
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Proposition 2.3. There is a constant Cn > 0 such that for all integrable
solutions u(x, t) the following decay estimate is valid for all t ≥ 1

(2.11) ∥u(·, t)∥∞ ≤ Cnt
−3/2e−λ1t∥u0∥1 .

The exponents in the right-hand expression as t → ∞ are optimal. This is
valid for all n > 1.

3. Pointwise bounds and Harnack-like inequalities

Now that we have some precise knowledge about the behaviour of the fun-
damental solution, we can use it as a comparison tool for general solutions
with nonnegative, compactly supported data thanks to the following result.

Theorem 3.1. For every solution u(x, t) with initial data u0 ≥ 0 having
mass M > 0 and supported in a ball of radius R > 0 around the pole o, and
for every L > 0 there is a constant C = C(R,L) > 1 such that the following
comparison holds

(3.1)
1

C
M Pt(x) ≤ u(x, t) ≤ CM Pt(x)

for all r = d(x, o) ≤ Lt and t ≥ 1.

Proof. By linearity we may assume that M = 1.
(i) We start with the upper bound. The proof of the bound will be based on
the fact that there is a worst case for all solutions with u0 supported in the
ball of radius R since when take a point x located far away from o (more
distance than R) in the direction of the first axis, x = (r, 0, . . . , 0) = r e1,
inspection of the representation formula (2.3) shows that we can move all
the mass to the point y1 with coordinates xR = (R, 0, . . . , 0) and then since
d(x, xR) = d(x, 0)−R < d(o, x) = r and the fact that Gt is decreasing in r
we get for x = r e1, r > R,

u(x, t) < u1(x, t) = Gt(d(xR, x)) = Gt(r −R).

Since the equation is invariant under rotations, considering points of the
form x = r e1, r > 0, is no restriction. This allows us to obtain desired upper
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bound in the annular region

A = {(x, t) : R < d(x, o) = r < Lt, t > 0}.

Together with the inequality u(x, t) ≤ G(r −R, t), we use the estimates
(2.8), so that

G(r −R, t) ≤ c1(n)hn(r −R, t) .

Using the explicit formulas for hn we observe that

hn(r −R, t)

hn(r, t)
≤ e(n−1)RerR/2t

(
1−

R

1 + r

)(
1−

R

1 + r + t

)(n−3)/2

.

Therefore, in the region A we get

u(x, t) ≤ c1(n)c2(R,L)hn(r, t) ≤ c3(n, L,R)G(r, t).

(i’) We still need to estimate the solution inside the ball of radius R. But
we know from (2.5) that for every (x, t)

u(x, t) ≤ P (0, t).

Changing P (0, t) into 0 < P (r, t) with r < R and t > 1 implies inserting a
constant depending on R. Putting both estimates together, the upper bound
in (3.2) follows.
(ii) We remark that under the assumptions and notations of (i) a similar
argument applies to the first step of the lower bound. Now the worst case
consists of moving the initial mass to x−R = (−R, 0, . . . , 0) and then we get

u(x, t) > u2(x, t) = Gt(d(x−R, x)) = Gt(r +R) ≥ c−1
n hn(r +R, t).

for all x = r e1, r > 0. ,

hn(r +R, t)

hn(r, t)
≥ e−(n−1)Re−R2/4te−rR/2t

(
1 +

R

1 + r

)(
1 +

R

1 + r + t

)(n−3)/2

.

The last quantity is bounded below for all 0 < r < Lt and t > 1. □

Remarks. 1) The control of the tail r ≥ Lt by a similar expression is false,
but it is true if we insert time delays into P .

2) Note that in the Euclidean space setting this result is true with C → 1
as t ≥ t0 → ∞, but such a fine convergence is false in the hyperbolic space,
as we will show below.
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We easily derive from the above result a Harnack inequality of elliptic
type for such a class of solutions.

Corollary 3.2. For every two solutions ui(x, t), i = 1, 2, with initial data
u0i ≥ 0 having mass 1 and supported in a ball of radius R > 0 around the
pole o, and for every L > 0 there is a constant C = C(R,L) > 1 such that
the following comparison holds

(3.2)
1

C
u1(x1, t) ≤ u2(x2, t) ≤ Cu1(x1, t)

for all ri = d(xi, o) ≤ Lt and t ≥ 1.

4. Mass analysis for the fundamental solution

We will proceed with the study of the long-time behaviour of solutions. As
a starting point, we return in this section to the fundamental solution. As
an important tool we introduce the concept of mass function. It is defined
for any integrable radial distribution f(r) ≥ 0 in hyperbolic space by the
expression

(4.1) M(f)(r) = ωn

∫ r

0
(sinh r)n−1f(r) dr ,

where ωn is the measure of the unit sphere Sn−1. Without loss of generality
we may assume that the total mass equals 1 so that M(f)(r) will be a
monotone function of r with M(f)(0) = 0, M(f)(∞) = 1.

If we apply this concept to an evolving distribution u(r, t) that satisfies
the heat equation, we obtain an evolving mass function M(r, t) such that
∂rM(r, t) = ωn(sinh r)

n−1u(r, t). From equation (2.2) we derive the evolu-
tion equation for the mass function M(r, t):

(4.2) ∂tM = ωn(sinh r)
n−1∂r

(
∂rM/(sinh r)n−1

)
= Mrr − a(r)Mr,

which is a modified 1D heat equation with a drift term that has variable
speed:

a(r) = −(sinh r)n−1((sinh r)1−n)r = (n− 1) coth r ,

moving in the forward direction. In the sequel we will use the fact that
a(r) → (n− 1) as r → ∞. We may also find a similar equation for the radial
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mass density

ρ(r, t) = ∂rM(r, t) = ωn(sinh r)
n−1u(r, t),

see details below. We recall that here and in the sequel r = d(x, o) ≥ 0.

4.1. Location of the mass bulk. Linear rate of mass escape

for n = 3

When studying the heat equation in hyperbolic space it is important to
find out where the most of the mass is actually located. We recall that in
Euclidean space the mass of the fundamental solution spreads with time
at distances of the order of O(t1/2). This is the so-called Brownian scaling.
There is a big difference in hyperbolic space due to the presence of the
drift term. We prove the following result about the mass location of the
fundamental solution for the heat flow in hyperbolic space that may look
very striking at first sight. We work in n = 3 for the moment in order to
exploit the extra sharpness given by the explicit formulas.

Theorem 4.1. Let n = 3. For all large t ≫ 1 most of the mass of the
fundamental solution is located in a thin annulus of the form {r1(t) ≤ r =
d(x, o) ≤ r2(t)}, where

(4.3) r1(t) = 2t− kt1/2, r2(t) = 2t+ kt1/2 ,

with k > 0 large but constant in time.

Proof. The mass of the fundamental solution in a thin annular region of the
form {r0 < r < r0 + dr} is equivalent to

dM(r0) = C(sinh r)2Gt(r)dr = C t−3/2r
sinh r

er
e−

(r−2t)2

4t dr.

This is better understood in terms of the variable ξ = (r − 2t)/t1/2. We get
for large t

dM = C
r

t

sinh r

er
e−ξ2/4dξ.

After a quick examination we conclude that for large t there exists a signif-
icant part of the total mass inside the region where ξ is bounded, |ξ| ≤ k,
which implies that r ∼ 2t+O(t1/2) (remember that r = 2t+ ξt1/2). Note
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that

rsinh r

ter
→ 1

as t → ∞ with r/t → 2. In particular, the mass located outside the interval
Ik = {−k ≤ ξ ≤ k} is very small, of the order of the Gaussian error function.

□

Note that the so-called mass line r = 2t refers actually to a expanding
spherical surface when seen as a set in H3, or a conical hypersurface when
seen as a subset of space-time, H3 × (0,∞).

Other geometrical lines. We want to relate this escape line with other
geometrical or mechanical distances. We may define the half-mass line as
the line r = rm(t) so that

∫ rm(t)

0
dM(r) = 1/2 .

Our formulas show that rm(t)/2t → 1 as t → ∞, more precisely rm(t) = 2t+
o(t1/2). Thus, for large t the mass is mostly located in a t1/2-neighbourhood
of the half-mass line.

A related distance is given by the sign-change line, r = rs(t), where
∂tG(r, t) = 0 (with ∂tG(r, t) < 0 for 0 ≤ r < rs(t)). An easy computation
gives the exact value

r2s(t) = 6t+ 4t2.

We have rs(t) = 2t+ (3/2) + . . . as t → ∞. Note that the approximation
r2s(t) ≈ 6t is good for small times and exactly represents the Euclidean sit-
uation.

4.2. Escape analysis for general dimensions. Ballistic motion

The same analysis in hyperbolic space with n > 1, n ̸= 3, leads to the mass
line r = (n− 1)t; the mass is concentrated for large t around that line in a
region with local width O(t1/2). We prove this by using the upper estimates
in Proposition 2.2. Indeed, we can prove that the tail integral

I+(L;T ) =

∫ ∞

r(L,t)
t−n/2 e−(r−(n−1)t)2/4t(1 + r + t)(n−3)/2(1 + r) dr
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with r(L, t) = (n− 1)t+ L t1/2, is small for large fixed L and all large t ≫ 1.
But for large t and putting r = (n− 1)t+ ξt1/2 we get:

I+(L;T ) ≤ C

∫ ∞

L
t−(n−1)/2 e−ξ2/4(t+ ξt1/2)(n−1)/2 dξ

≤

∫ ∞

L
e−ξ2/4(1 + ξt−1/2)(n−1)/2 dξ

which goes to zero with L → ∞, uniformly in t. The same applies to the
near field remainder

I−(L;T ) =

∫ r−(L,t)

0
t−n/2 e−(r−(n−1)t)2/4t(1 + r + t)(n−3)/2(1 + r) dr

with r−(L, t) = (n− 1)t− L t1/2.

Note. We have learnt the recent work of Lemm and Markovic who prove
in Appendix A of [20] the drifted location of the heat kernel that we have
described. The feature is suitably described by them as ballistic propagation.

4.3. Dimensional explanation

The escape of the mass with a precise linear motion may look surprising, but
there are simple dimensional considerations to support it (in rough terms).
First of all, the well-known fact that λ1 = (n− 1)2/4 > 0 is the first eigen-
value of the Laplace-Beltrami operator in Hn explains the appearance of the
exponentially decreasing factor e−λ1t in the sup norm size of the h.f.s. The
factor t−3/2 serves as a minor correction and is related the Euclidean case.

Next, since there is conservation of mass too, the h.f.s needs to spread
at least in a region of volume inverse to the sup norm, i.e. roughly V ∼ eλ1t

(we forget the power correction in first rough approximation). Since the
volume of a ball grows like V (Br(0)) ∼ (sinh r)n−1, we find after this rough
calculation that most of the mass is located at or beyond r1 ∼ λ1t/(n− 1) =
(n− 1)t/4, which is our result up to a factor 1/4. Of course, this does not
explain why the mass concentrates “mostly near the boundary of a precise
ball”.

5. The 1D asymptotic limit. 1D heat equation with drift

We have established in Section 4 the (asymptotically linear) escape motion

of the mass bulk of the h.f.s.: for large t the mass is mostly located next to the
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line r = (n− 1)t. This phenomenon clearly does not happen in the Euclidean
case. Next, we want to see the detailed evolution near this region of mass
concentration. Actually, when t → ∞, we will show that the fundamental
solution becomes a standard 1D heat equation with constant drift (after
proper renormalization).

Let us prove this fact in dimension n = 3 by direct inspection. If ρ(r, t) =
∂rM(r, t) is the mass density of the h.f.s., then in three space dimensions we
get

ρ(r, t) = 4π(sinh r)2G(r, t) = (4πt)−1/2 r sinh r

ter
e−(r−2t)2/4t.

As t → ∞ and for r/2t → 1 we get the equivalence

ρ(r, t) ∼ E1(s, t) = (4πt)−1/2e−s2/4t ,

where E1(s, t) is the fundamental solution of the heat equation in the real
line R, and s = r − 2t is the radial coordinate with respect to the mobile
frame. We easily get the following precise result.

Theorem 5.1. If G(r, t) is the fundamental solution of the heat equation
in hyperbolic space H3 and E1(r, t) is the fundamental solution of the heat
equation in the real line R, we get the limit

(5.1) lim
t→∞

4π (sinh r)2G(r, t)

E1(r − 2t, t)
= 1

uniformly on sets of the form: |s| = |r − 2t| ≤ Lt1/2, L > 0. Moreover, we

have the weighted L1-error estimate

(5.2) lim
t→∞

∫ ∞

0
|4π(sinh r)2G(r, t)− E1(r − 2t, t)| dr = 0 .

5.1. Limit behaviour in general dimensions

This convergence result can be generalized to all space dimensions n ≥ 2.
We will do it via the PDE satisfied by ρ, since using the same approach
with direct computations soon becomes cumbersome. Thus, from (4.2)
we get the following equation for the mass density ρ(r, t) = ∂rM(r, t) =
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ωn(sinh r)
n−1Gt(r):

(5.3) ∂tρ+ (n− 1)∂rρ = ∂2
rrρ− (n− 1)∂r(b(r)ρ) , b(r) = coth (r)− 1 .

As t → ∞ and for r/(n− 1)t → 1, we see that b(r) → 0 (very quickly) so
the last term is really lower order. Hence, we hope to get convergence of ρ
to a solution of the limit equation:

(5.4) ∂tρ+ (n− 1)∂rρ = ∂2
rrρ ,

which is a heat equation with the expected outgoing drift. The limit solution
ρmust be a 1D Gaussian for large times after eliminating the drift. Complete
details are needed to justify the proof. They go as follows:
(i) We introduce new coordinates to correct for the drift term

s = r − (n− 1)t, M̂(s, t) = M(r, t), ρ̂(s, t) = ρ(r, t) .

Then the equations for mass and density become resp.

∂tM̂ = ∂2
ssM̂ − b̂(s) ∂sM̂,

with b̂(s) = coth (r)− 1 > 0, and

∂tρ̂ = ∂2
ssρ̂− (n− 1) ∂s(̂b(s)ρ̂) .

Both equations are posed in the expanding parabolic domain

Q = {(s, t) : t > 0, −(n− 1)t < s < ∞}.

(ii) We remark that the last term in both equations can be considered as
an asymptotically small perturbation with respect to the heat equations
satisfied approximately by M̂ and ρ̂. This will imply convergence of both as
t → ∞ to Euclidean limit for all s = r − (n− 1)t. The asymptotic analysis of
evolution processes that can be viewed as asymptotically small perturbations
of known dynamical systems has a long tradition in PDEs and Mechanics.
We refer to the book [10] for the theory and the application to a number
of nonlinear heat equations. The main result says that, under rather simple
given assumptions, the orbits of the perturbed system converge as t → ∞
to the ω-limit (i.e., the asymptotic states) of the master system. Here, the
master equation is the 1D heat equation in the line, and its ω-limit in the
class of integrable solutions is formed by multiples of the Gaussian kernel,
a well established fact, [31].
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(iii) The convergence proof in the present case may proceed as follows. In
view of the fact that the tails are under uniform control, we need interior
estimates, specially in the range where r ∼ (n− 1)t. First of all,

∂sM̂ = ∂rM(r, t) = ρ(r, t) = c(sinh r)n−1u(r, t) ,

which is positive and bounded. According to the estimate of Proposition 2.2,
it is bounded uniformly for large t, and of order t−1/2 for r ∼ t. Furthermore,
Mt ≤ 0 and

−Mt = −

∫ r

0
(sinh r)n−1ut dr

= −

∫ r

0
((sinh r)n−1ur)r dr = −(sinh r)n−1ur ≥ 0,

which for r ∼ (n− 1)t gives

−Mt = ent(sinh r)nu(n+2)(r, t) ≤ Cent(sinh r)−1re−(2t)2/4tt−3/2 ∼ Ct−1/2.

Now, ∂tM̂ = Mt − (n− 1)Ms, so it also has a good bound as t → ∞.
(iv) We want to pass to the limit t → ∞ in a typical heat equation way. For
that we perform a rescaling on the space variable and consider the conver-
gence of the mass expressed in the rescaled variable, N(ξ, t) = M̂(ξt1/2, t),
i.e., as a function of ξ = s/t1/2 and t. Using compactness and the far field esti-
mates, we conclude that N(ξ, t+ tk) converges along subsequences tk → ∞
to a solution of the rescaled heat equation, N , the limit is monotone in ξ
and joins the level N(−∞, t) = 0 to N(−∞, t) = 1. A close analysis of the
limit as solution of the rescaled heat equation shows that N must be the
integral of the Gaussian kernel (i.e., its accumulated mass). In other words,

(5.5) lim
t→∞

|M̂(s, t)−M1(s)| → 0 ,

uniformly in s ∈ R. M1 denotes the 1D mass function of the stationary
Gaussian kernel.
(v) We continue with the convergence of

ρ = ∂ξN(ξ, t) = t1/2∂sM̂ = t1/2ρ̂.
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A previous estimate shows that ρ is a bounded function of ξ and t for large
t. Also, ρξ = t1/2ρ̂s(s, t), hence

ρξ = t1/2ρr = Ct1/2((sinh r)n−1u)r

= Ct1/2(sinh r)n−1ur + C(n− 1)t1/2(sinh r)n−2(cosh r)u.

We conclude from previous estimates that ρ(ξ, t) is compact and therefore we
get the convergence in L1 to the derivative ofM1(ξ), i.e., the Gaussian kernel,
by virtue of (5.5). In this way we get the generalization of Theorem 5.1 to
n dimensions.

Theorem 5.2. If G(r, t) is the fundamental solution of the heat equation
in hyperbolic space Hn, n ≥ 2, and E1(r, t) is the fundamental solution of
the heat equation in the real line R, we get the limit

(5.6) lim
t→∞

∫ ∞

ξ0

|ρ(ξ, t)− E1(ξ, 1)| dξ = 0 ,

where, ξ0 = −(n− 1)t1/2 means r = 0. In other words,

(5.7) lim
t→∞

∫ ∞

0
|ωn(sinh r)

n−1G(r, t)− E1(r − (n− 1)t, t)| dr = 0 .

6. Long-time convergence results for radial solutions

We want to prove the following main result.

Theorem 6.1. Let u(r, t) a positive solution of the heat equation in Hn

with radially symmetric data having compact support and mass 1, and let
P (r, t) be the fundamental solution. Under these assumptions we get

(6.1) lim
t→∞

∥P (r, t)− u(r, t)∥L1(Hn) = 0,

The condition of compact support on the data may be replaced by strong
decay at infinity, but we will not discuss that issue.

6.1. Convergence with rate for a solution with time delay

in dimension n = 3

We start the proof dimension 3 since the details are quite precise. We
compare the fundamental solution P (r, t) with its time-delayed version
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Q(r, t) = P (r, t+ 1) for large t, as a stepping stone for comparison of more
general radial solutions.
(i) Preliminary calculation. We have

logP = logC − (3/2) log t+ log(r/sinh r)− t−
r2

4t
,

so that
∂tP

P
= −

3

2t
− 1 +

r2

4t2
.

We immediately see that

∂tP

P
≥ −

3

2t
− 1.

This proves that for large t we have

P (r, t+ 1) ≥ P (r, t) e−1 (t/(t+ 1))3/2 ,

which relates the mass of Pt and Pt+1 but for a factor e. This is not enough
for our purposes.

To continue, we put r = 2t+ ξt1/2. Then r2 = 4t2 + 4ξt3/2 + ξ2t, and

∂tP

P
= −

3

2t
− 1 +

r2

4t2
= −

3

2t
+ ξt−1/2 +

1

4
ξ2t−1,

so that we have |∂tP | ≤ CP t−1/2 for bounded ξ: |ξ| ∈ L, uniformly in t ≫ 1.

(ii) Compare now the solution P (r, t) with Q(r, t) = P (r, t+ 1) for large t.
In view of our previous analysis of the location of the mass, we can use
(i) to prove that the local mass of the difference |Pt −Qt| is very small for
large t with an order of convergence. We know that the zone where the
mass of solution P concentrates is {−L < ξ < L} for some large L, hence
{2t− Lt1/2 < r < 2t+ Lt1/2}. The same is true for Q in the region

2(t+ 1)− L(t+ 1)1/2 < r < 2(t+ 1) + L(t+ 1)1/2

= 2t+ Lt1/2 + 2 +O(t−1/2).

Both regions are very similar for large t. In the intersection of both regions
we have a very small relative variation of P , hence a very small variation
of the mass per unit time. In the complement of this region, we get a very
small mass for both solutions anyway. Putting these facts together, we get
the L1 convergence result.
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Note. We can get a decay rate by estimating the mass outside in terms of
the bound L for ξ. This is to be done, but not difficult. We omit it since it
is not essential in what follows.

6.2. Convergence example in general dimensions

We can use the asymptotic result of Theorem 5.2 to prove that the L1 con-
vergence of Pt(x)− Pt+1(x) to zero in L1(Hn) as t → ∞. Indeed, from (5.6)
we get

(6.2) lim
t→∞

∫ ∞

−∞
|ρ(ξ, t+ 1)− ρ(ξ, t)| dξ = 0 ,

where the functions are extended by zero for r < 0 for ease of notation. This
means that

(6.3) lim
t→∞

∫

Hn

|P (x, t+ 1)− P (x, t)| dµ(x) = 0 .

No rate is given in this case.

6.3. General radial data

The same positive conclusion holds for a wide class of nonnegative radial
initial data. We use techniques of intersection number and mass comparison.
In order to do the analysis we use polar geodesic coordinates for functions
u(r, t) ≥ 0.

(i) We recall the mass function (4.1) and the mass equation (4.2). For
smooth radial solutions of the hyperbolic heat equation, the mass equation
satisfies the maximum principle in the sense that when u1 and u2 are smooth
solutions of the heat equation with total mass 1, and we have the comparison
M1(r, 0) ≤ M2(r, 0) for all r > 0 for the respective mass functions, then we
have

M1(r, t) ≤ M2(r, t) for all r, t > 0.

(ii) We now recall the basic idea of intersection comparison, also called
lap number. The number of intersections of two solutions I(u1, u2) of the
heat equation does not increase with time. In particular, if at t = 0 the
number is 1 then for later times it must be 0 or 1. But when both have mass
1, zero intersections are impossible. Hence, it is 1 all the time.
Note. The technique works in one dimension, or for radially symmetric
solutions in several dimensions, and is based on counting the evolution in
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time of the “number of intersections of two solutions”, a rough idea that
can be made precise with the names intersection number or lap number.
These concepts have been investigated in works by Sattinger [26], Matano
[21], Angenent [1] and others, and were used by Galaktionov and the author
in a number of papers, cf. [10].

(iii) We apply both principles to a solution u that is sandwiched between
u1(r, t) = P (r, t), the fundamental solution, and u2 = P (r, t+ 1). The pre-
cise conditions are

M1(r, 0) = 1 ≥ M(r, t) ≥ M2(r, t).

and

I(u1, u)(t = ε) = 1, I(u, u2)(t = 0) = 1,

with the intersection such that u− u1 and u2 − u are positive for all large r.
Note that the last condition also happens for I(u1, u2). These conditions will
be conserved for all times t > 0. Let us fix t large so that by the preceding
theorem M1(r, t)−M2(r, t) ≤ ε for all r. Let r∗ be intersection point of u1
and u. We have

∫
(u1 − u)+ dµ = C(M1(r∗)−M(r∗)) ≤ C(M1(r∗)−M2(r∗)) ≤ Cε,

while conservation of mass implies that
∫

(u− u1)+ dµ = −

∫
(u1 − u)+ dµ.

This ends the proof that Theorem 6.1 holds for P and u.
(iv) for more general radial integrable data we use approximation. □

6.4. Sup and L
p convergence

We state now the convergence in the Lp norms. The convergence in the sup
norm is not so strong as the following result shows:

Corollary 6.2. Under the assumptions of Theorem 6.1 we have

(6.4) ∥P (r, t)− u(r, t)∥L∞(Hn) = O(t−3/2e−λ1t) as t → ∞ ,

as well as the optimal result

(6.5) ∥P (r, t)− u(r, t)∥Lp(Hn) = o(t−3(p−1)/2pe−λ1(p−1)t/p) as t → ∞.
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valid for all 1 < p < ∞,

Proof. (i) The sup result is a consequence of Theorem 3.1. It also follows
from the convergence (6.1) and the regularizing effect (2.11). Indeed, given
ε > 0 for some large T we have

∥P (r, T )− u(r, T )∥L1(Hn) ≤ ε,

so that for t > T we get

∥P (r, t)− u(r, t)∥L∞(Hn) ≤ εeλ1T t−3/2e−λ1t = Ct−3/2e−λ1t.

(ii) The result for 1 < p < ∞ follows by interpolation. □

Remark. The result for p = ∞ is weaker. There is a reason for that. If we
take the explicit h.f.s in n = 3 and perform a delay u(x, t) = Gt+a(r) we see
that

u(0, t)

Gt(0)
= e−λ1a t3/2

(t+ a)3/2
→ e−λ1a ,

so that

t3/2eλ1t∥P (r, t)− u(r, t)∥L∞(Hn)

does not to go zero as t → ∞.

7. Horospheric solutions

There is a class of solutions of the heat equation in Hn that also enjoy
a special symmetry, called horospheric symmetry, that allows for an easy
analysis. They are interesting examples and serve to derive consequences
for the general theory. In particular, they allow to demonstrate the phe-
nomenon of mass escape, even the precise speed n− 1, and it does indeed in
a very clear way. The class is best presented in the upper half-space repre-
sentation of the hyperbolic space, identifying Hn as Rn−1 × R+ (one of the
mentioned Poincaré representations). We take as coordinates for points in
Hn the pairs (x, y) with x ∈ Rn and y > 0, and then the metric is given by
ds2 = y−2(dx2 + dy2).

We consider only solutions of the heat equation that depend only on
the variable y. Since the lines y = c are so-called horospheres (horocycles in
2D), we call these solutions u(y, t) horospheric solutions. The heat equation
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is then written as a modification of the 1D equation

(7.1) ut = y2uyy − (n− 2)y uy.

There is a very handy transformation to transform it into the standard 1D
heat equation. We just put u(y, t) = v(z, t), with z = log(y), and get

(7.2) vt = vzz − (n− 1)vz.

This is the same equation with drift that we have found before as limit
of the equations that govern the class radial solutions for t ≫ 1, when the
geometric factor, coth r, tends to just 1, cf. equation (5.4). Note also that
z =

∫
dy/y =

∫
ds is just the geodesic distance when going along the y axis,

normal to the horospheres.
Hence, if we take horospheric solutions with initial data u0(y) ≥ 0 and

satisfying the 1D integral condition:

(7.3)

∫ ∞

0
u0(y)y

−1dy =

∫ ∞

−∞
u0(e

z)dz < ∞,

the asympotics as t → ∞ is given by an expanding Gaussian E1(s, t) with
respect to the moving space variable s = z − (n− 1)t, and the bulk moves
sideways in the forward direction as function v(z, t), with constant speed
(n− 1) measured in the z scale.

Theorem 7.1. With the previous notations and assumptions, we have

(7.4) lim
t→∞

∣∣∣t1/2v(z, t)− E1((z − (n− 1)t)/t1/2)
∣∣∣ = 0

uniformly in s.

The reader is asked to picture the equivalent drift motion in terms of
the original y variable.

Comments. 1) In the way of comparison of the class of radial solutions and
horospheric solutions, let us recall that the integrability condition (7.3) we
have imposed on the latter does not imply integrability in Hn since we are
not integrating in the variables (x1, ..., xn−1). Therefore, the Hn integral is
infinite.
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2) A consequence of this different integrability is that our horospheric solu-
tions decay like

u(y, t) = v(s, t) = O(t−1/2) ,

as time goes to infinity. The exponential time factor of the radial solutions
is canceled. On the other hand, the drift has the same size, only dependent
of the dimension. Namely, the ballistic effect is in place in simplest form.

8. Negative asymptotic convergence results for

displaced masses

This study has two parts, one about the relative pointwise error that happens
near the origin, and implies the sup norm results of Theorem 1.4. Another
part deals with the examples exhibiting the lack of convergence of the L1

error, that is shown to happen at the critical distance d(x, o) ∼ (n− 1)t.

8.1. The pointwise error

(i) Let Pt(x, o) = Gt(r), the fundamental solution centered at x = o. We
want to prove that

lim
t→∞

t3/2eλ1tPt(x; o) = Qn(r) > 0

for a certain C∞ function Qn that is bounded and monotone nonincreasing
in r. From Proposition 2.2 we know that

C1(1 + r)e−(n−1)r/2 ≤ Qn(r) ≤ C2(1 + r)e−(n−1)r/2

so that Qn is not constant in r. Actually, it is an analytic function of r2 with
a maximum at r = 0. In three dimensions we have the simple expression

Q3(r) =
Cr

sinh r
.

This function has a maximum at r = 0 (x = o) and decreases rapidly as r
grows. This is in sharp contrast with the Euclidean case where we get local
homogeneity at this level, i.e.,

lim
t→∞

tn/2Et(x; 0) = (4π)n/2 > 0.

(ii) In order to prove our negative result, we take as second solution the
fundamental solution u1(x, t) = Pt(x, xa) centered at xa = (a, 0, . . . , 0), and
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we compare it with Pt(x, o). We consider the points x′ = (r, 0, ..., 0) in the
geodesic line joining P0 = o and Pa = xa, and we get for some r > a

(8.1) lim
t→∞

t3/2eλ1t|u1(x
′, t)− Pt(x

′; o)| = Q(r − a)−Q(r) > 0.

Therefore, the L∞ version of Theorem 1.3 is not true.

8.2. Study of the asymptotic mass error

We have seen that there is a lack of uniform convergence near the origin that
forces the expected L∞ convergence to fail. We want to prove a similar lack
of sharp convergence for the L1 norm. Since we already know that the mass
concentrated on bounded balls goes quickly to zero as t → ∞, it is natural
to enquire where and how the mass errorFF is kept. The answer is that there
is a non-vanishing error on and around the so-called mass line r = (n− 1)t.
This is what we are going to show here. We work out the complete detail
only in dimension n = 3 for simplicity.

Study of the solution to a displaced mass. Again, we take as solution
u the fundamental solution u1 centered at xa = (a, 0, . . . , 0) and compare it
with Pt(x) = Gt(r), the fundamental solution centered at x = o. Our proofs
will be based in finding bounds for the displaced solution compared with the
fundamental solution along the axis of displacement. Note that the mass of
the displaced solution will concentrate of a thin annulus at distance (n− 1)t
from xa that will look like a distorted annulus as seen from the original
center x = o.

(i) Control along the axis. We consider the displaced solution with initial
mass at xa. Its value along the x1 axis is given by

u(x, t) = Gt(r − a) = Ct3/2e−te−(r−a)2/4t r − a

sinh (r − a)
,

where x = (r, 0, . . . , 0). Hence for r > a

Gt(r − a)

Gt(a)
= e

ar

2t e−
a2

4t
(r − a) sinh r

r sinh (r − a)
.

There is a bound for the last quotient in the interval a < r < kt

(r − a) sinh r

r sinh (r − a)
≤ cea
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hence for all a < r < kt we have

Gt(r − a)

Gt(a)
≤ e

ar

2t cea ≤ ce(1+k/2)a.

This includes the mass region x− 2t ∼ ξt1/2 where we have for large t

Gt(r − a)

Gt(a)
∼ e2a > 1.

Note that there is a further correction factor e−a2/4t2 that does not count
for large t ≫ a. Hence, in the interesting interval in the x1-axis Gt(r − a) is
larger than and proportional to Gt(r).

(ii) Control in a region. We need to extend this result to a region around
the interval in the x1 axis in order to control the difference of mass of the two
solutions. We will take an annulus with center O and restrict it to the cone
along the x1 axis with a small angle φ0 (amplitude). We call this region R.

In order to calculate the difference of solutions we have to compare for
fixed radius r ∼ 2t the values of u(x, t) = Gt(d(xa, x)) with Pt(x) = Gt(r)
for any point x at distance r from the origin O and angle 0 ≤ φ ≤ φ0. Let us
call L the distance d(xa, x) We note that L = L(a, φ, r) is always located in
the interval r − a < L < r + a. Indeed, for the calculation of quotients u/G
we need to estimate a(φ) = r − L(a, φ). For angle φ = 0 we have L = r − a
and the calculation of quotients u/G has been just done and amounts to
ce2a in the region R. For angle φ > 0 we need to estimate a(φ) from below.

In n = 2 we may use the formula of hyperbolic geometry for triangles
that reads

coshL = cosh r cosh a− sinh r sinh a cosφ,

We are interested in a of small size and r and L very large. Then

cosh r cosh a− sinh r sinh a cosφ

=
1

4
er+a(1− cosφ) +

1

4
er−a(1 + cosφ) + o(1).

We want a(φ) = r − L ≥ a/2 hence approximately

er+a(1− cosφ) + er−a(1 + cosφ) < 2e−a/2er

We need

2e−a/2 ≥ ea(1− cosφ) + e−a(1 + cosφ) = 2e−a + (ea − e−a)(1− cosφ)
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hence

e−a/2(1− e−a/2) ≥ sinh a (1− cosφ).

This is true for φ = 0 and it will be true for some 0 < φ < φ0 that depends
on a but not on r as long as r is very large.

(iii) Mass estimate in the mass line region. The mass contained in that
region is then proportional and larger for u than for Gt(r) by a constant
factor.

We conclude that there exists a function F (a) > 0 such that for all large
t ≫ 1

∥Gt(r − a)−Gt(r)∥1 ≥ F (a)

which is the worst case for a bound of the form

∥u(r, t)−Gt(r)∥1 ≥ f(a, t)

in the class of initial data which are bounded, nonnegative with compact
support.

(iv) Far field estimates. On the other hand, in the far field we have the
bound with respect to a fundamental solution that is a bit delayed in time:

Gt(r − a)

Gt+ε(r)
=

(
t+ ε

t

)3/2 (r − a)sinh r

rsinh (r − a)
e

r2

4(t+ε)
− (r−a)2

4t .

But

r2

4(t+ ε)
−

(r − a)2

4t
=

1

4t(t+ ε)
{−εr2 + 2ra(t+ ε)− a2(t+ ε)}

If t is large, ε small and r > kt we then have

Gt(r − a)

Gt+ε(r)
≤ 2eae−r(εr−2at)/4t2

which is bounded uniformly if r > (2a/ε)t. This gives a uniform bound and
proves at the same time that the mass in that region is negligible for both
solutions if k is large.

From the analysis we get the following conclusion

Theorem 8.1. There is a positive constant c = c(a) ∈ (0, 1) such that for
all large t

(8.2) ∥(u(·, t)−Gt(·))+∥L1(H3) ≥ c(a) > 0.
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8.3. Nonradial Counterexample. Second derivative in a.

We want to prove that there is no convergence to the fundamental solution
centered at a certain center of mass, which was a possible remedy to the
negative result. We consider the solution u1 with the following initial data:
1/2 Dirac mass at P1 = (1, 0, . . . ) and 1/2 Dirac mass at P2 = (−1, 0, . . . ),
and prove that the negative result of Theorem 8.1 still holds. Note that for
large t the solution mass will be concentrated on the union of two closely
located distorted annuli.

To begin with, at a point r > 1 along the x1 axis we get

u1(r, t) =
1

2
Gt(r − a) +

1

2
Gt(r + a) ,

so that for the region of mass interest r ∼ 2t we get

u1(r, t) ∼
1

2
e2aGt(r) +

1

2
e2aGt(r) = cosh (2a)Gt(r) ,

which is larger than Gt(r) by a factorK = cosh (2a)− 1 > 0. Note that there
is a further correction factor e−a2/4t2 that does not count for large t ≫ a.

We also have

logP (r, a) = logC − (3/2) log t+ log(r/sinh r)− t−
r2

4t
.

So that
∂aP (r + a, t)

P (r + a)
=

1

r + a
−

cosh (r + a)

sinh (r + a)
−

r + a

2t
.

and also

∂2
aP

P
−

(
∂aP

P

)2

= −
1

(r + a)2
−

1

sinh 2(r + a)
−

1

2t
.

For the interesting region r ∼ 2t we have ∂aP/P ∼ −2 and ∂2
aP/P ∼

(∂aP/P )2 ∼ 4. This allows to produce the counterexample.

9. The complete equation

We now take a look at the complete equation

(9.1) ∂tu = ∆gu+ f ,
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where the novelty is the forcing term f = f(x, t). It is well known that,
similarly to the Euclidean case, the complete equation in Hn generates an
evolution process for all f ∈ L1(0,∞;Lp(Hn)) with 1 ≤ p < ∞. Solution is
understood in the mild sense of the semigroup theory. Moreover, the fol-
lowing basic estimate is true for any two integrable solutions u1, u2, with
integrable data f1, f2, and initial conditions u01, u02.

∥u1(t)− u2(t)∥1 ≤ ∥u1(0)− u2(0)∥1 +

∫ t

0
∥f1(s)− f2(s)∥1 ds .

with norms in L1(Hn). In a rather standard way we can combine this esti-
mate with Theorem 1.3 and get

Theorem 9.1. Let u(x, t) be a solution of the complete heat equation in the
hyperbolic space whose initial function u0 ∈ L1(Hn) is radially symmetric
in geodesic coordinates around a pole o ∈ Hn and has mass M0, and let
f = f(r, t) belong to L1

t,x(H
n × (0,∞)). Then we have

(9.2) ∥u(x, t)−MPt(x)∥L1(Hn) → 0 as t → ∞ ,

where M is the accumulated mass,

(9.3) M = M0 +

∫ ∞

0

∫

Hn

f(r, t) dµ dt.

This is proved like in the heat and porous medium cases, cf. [28]. Results
about convergence in sup norm need extra assumptions on the decay of f
for large time. We skip further details.

10. Comments and problems

• If we compare the mode of asymptotic convergence in the 3 main geome-
tries, we find quite different types of convergence: (I) convergence with a
polynomial rate to the Gaussian profile in the Euclidean case (curvature
K = 0), (II) convergence to the constant state with exponential rate in the
spherical case (curvature K > 0), and (III) the kind of convergence we have
described here in the hyperbolic geometry (curvature K < 0). To note also
that the heat flow in bounded domains of Rn looks like the K < 0 case,
in the sense for both Dirichlet and Neumann problems convergence to the
asymptotic profile happens with an exponential rate.
• We pose as an open problem finding a clear proof of Theorem 1.4 in
dimensions n ≥ 2 other than 3.
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• The investigation of the precise large time behaviour of nonlinear heat flows
on hyperbolic space has been done by the author in the case of the Porous
Medium Equation in [29], with quite different results. Thus, no equivalent
to mass escape is found, either in the radial or in the horospheric class of
solutions. Also, the p-Laplacian equation was considered in [29]. Radial fast
diffusion on the hyperbolic space was considered in [12]. A first analysis of
the FDE on negatively curved manifolds was done in [5]. To note that for
flows in the Euclidean space the nonlinear flows corresponding to the PME
and Fast Diffusion Equation (FDE) are not so much at variance with the
linear flow (the heat equation in Rn), see [28, 30].

On the same vein, there is a stark contrast when comparing the horo-
spheric solutions in the linear heat equation case (see Section 7) and the
nonlinear PME analysis done in [29]. We recall that in this setting there are
many explicit formulas that help understand the evolution.
• In the Porous Medium Equation case the analysis has been extended to
flows in some Cartan-Hadamard manifolds with negative curvature under
conditions on the behaviour of the negative curvature “at infinity”, see [13,
14]. Such a study is to be done in the heat equation case.
• It is interesting to insert the quantitative effect of a negative curvatureK <
0 and examine the limit K → 0 to see how the hyperbolic effects disappear.
The heat equation becomes

∂tu = ∆gu ≡ (sinh(r/R))1−n ∂

∂r

(
(sinh(r/R))n−1∂u

∂r

)

+
1

R2 (sinh(r/R))2
∆Sn−1u ,

where R2 = −1/K. It follows that when u1(r, σ, t) is a solution of the heat
equation on the standard hyperbolic space with curvature −1, then for every
C > 0

uR(x, t) = C u1(r/R, σ, t/R2)

(where we use polar coordinates x = (r, σ)) is a solution of the heat equation
in the hyperbolic space with curvature −R−2. When the solutions are radial,
the new mass element reads

dMR(r, t) = ωnuR(r, t) (R sinh (r/R))n−1 dr

= Cωn u1(s, t
′)(R sinh (s))n−1Rds
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with s = r/R and t′ = t/R2. Moreover, choosing C = R−n we preserve the
total mass. It also follows that for very large R we have

dMR(r, t) ≈ ωnuR(r, t)r
n−1 dr,

which copies the Euclidean formula. The reader is asked to confirm that
the fundamental solution in hyperbolic space converges to the Euclidean
one under the proper scaling when R → ∞. The calculation is immediate
for n = 3 using formula (2.6) with the indicated constant. Moreover, in this
case it is easy to see that for all large R the hyperbolic fundamental solution
GR satisfies

GR(r, t) = E(r, t)(1−R−2(t+ r2/3) +O(R−4)),

where E is the Euclidean Gaussian solution. The expression holds uniformly
for t and r bounded. In this way, we see how the exponential decay in time,
which is a typical feature of finite-mass solutions in hyperbolic space, is
lost in the limit and keeps only the power decay component. The new mass
line becomes r = (n− 1)t/R, so in the limit the ballistic effect disappears.
We also ask the reader to compare these results with the 1-dim. Euclidean
analogue of Section 5.

Note that we relate the attractors of heat flows on sequences of manifolds.
Let us mention that taking limits of manifolds is an important topic in
Riemannian Geometry after Gromov’s work [18] and there are interesting
issues that can be raised in that direction.
• It will also be interesting to better understand the local space inhomo-
geneity of the fundamental solutions, that for n = 3 reads Q(r) = r/sinh r.
As we saw, it plays a role in the negative convergence result.
• A natural generalization would be to consider variable curvature manifolds
such as Cartan-Hadamard manifolds. It has been considered by the author
and collaborators in previous papers. We mention in this section a natural
framework for similar results: the case of any Riemannian symmetric space
of non-compact type. When dealing with real hyperbolic spaces, it is natural
to consider actually the larger class of all rank 1 symmetric spaces of non-
compact type. The table below provides all of them.

Hd=Hd(R) Hd(C) Hd(H) H2(O)

n d 2d 4d 16

ρ (d−1
2 )2 d 2d+1 11
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In the table, we denote by n the Riemannian dimension and by ρ the bottom
of the spectrum of the Laplace operator. The idea behind is that (after
Helgason, see for instance [19]) the spherical analysis on all these spaces
is completely similar and thus provides similar bounds on the heat kernel.
More precisely, we refer to the work of Anker and Ostellari [3] where precise
estimates for the heat kernel on symmetric spaces of non-compact of any
rank (see their Main Theorem). Furthermore, the result on heat propagation
concentrated on a precise annulus in Section 4 of the same work is consistent
with ours. It has to be noticed that such results are also true on Damek-
Ricci spaces (as discovered in [2]). Extending our asymptotic analysis to
those settings is therefore a natural task.
• Different variants of the basic heat equation have been studied. Let us
give an example of a heat equation with a reaction term: the equation ut =
∆g(u) + f(u) has been studied in [22] in the KPP case f(u) = u(1− u), and
the presence of travelling waves as asymptotic profiles is established. This
is quite different from the behaviour described here in the free case f = 0.
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